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The correlation function Monte Carlo method for calculating ground and excited state properties is extended
to complex Hamiltonians and used to calculate the spectrum of neutral helium in a wide range of magnetic
fields, a system of particular interest in astrophysics. Correlation functions in imaginary time are evaluated for
a set of trial functions over a random walk whose dynamics is governed by the imaginary-timeiSgaro
equation. Estimates of the exact energy spectrum and other expectations are made by diagonalizing the matrix
of correlation functions. Using the exact results of this “released-phase” Monte Carlo approach, we assess the
accuracy of the fixed-phase quantum Monte Carlo and Hartree-Fock methods for the helium atom in strong
magnetic fields[S1063-651X97)07605-9

PACS numbds): 02.70.Lq, 31.10+z, 32.60:+i, 71.10~w

[. INTRODUCTION can view this extension of the correlation function approach
as a relaxation of the fixed-phase constraifitence,

If the Hamiltonian of a physical system is real, then it is “released-phasej; while simultaneously evaluating many
always possible to construct wave functions that are reagexcited states. We first review the CB technique and discuss
With the addition of a magnetic field the ground state will, in the changes that need to be made in the method to treat
general, be complex valued. Quantum Monte Carlo simulacomplex-valued Hamiltonians and wave functions. Sample
tion is difficult unless the wave function can be made realcalculations using the released-phageP) Monte Carlo
and non-negative because the wave function is interpreted &8ethod are then presented for helium atoms in a magnetic
a probability distribution. For real-valued wave functions field, which to date have only been studied with relatively
one uses théixed-nodd 1] approximation to calculate states inaccurate mean-field methods.
which are the ground states of a given symmetry but are not Neutral helium has been suggested as a possible explana-
positive. For complex-valued states, the analogous method f#n for unexplained spectra of some magnetic white dwarf
the fixed-phaseguantum Monte CarlgFP) technique devel-  stars[8,9], where the field can be as strong as'1G. Pre-
oped by Ortiz and co-workef&,3]. It assumes #ial phase vious calculations for helium in strong magnetic fields using
of the complex many-body wave function, and exactly solvediartree-Fock(HF) [10,12 methods have not been suffi-
the resulting equation for its modulus using random walks. ciently accurate, and the fixed-phase method is no longer

As is the case with the fixed-node approximation, onevariational for excited states. Two electron systems also oc-
does not know internally the quality of the trial phase. Forcur as excitons in certain semiconductft§]. We use our
real wave functions one can calculate the exact energy bgpplication to magnetized helium atoms to study the effi-
allowing the walks to cross the nodal surface. There are tweiency of the released-phase quantum Monte Carlo approach.
related methods for relaxing the fixed-node constraint in this Although in this paper we focus on helium, the RP
fashion, called the transient estimate and the release-nodeethod is sufficiently general for application to any problem
methods. For estimating excited states, one must also kediith a spectrum of complex valued eigenstates, such as
the states orthogonal to lower states of the same symmetrguantum dot$14] and anyons in a magnetic fiefd5,16].

This is accomplished by a method called correlation function
Monte Carlo, introduced by Ceperley and Befdl (hereaf-

ter referred to as CBand applied to small molecul@s] and

the excitations of the two dimensional electron f#is It has
also been used to determine eigenvalues of classical spin Zero temperature quantum Monte CaflC) methods
systems[7]. An advantage of this method is that one cantypically begin with the choice of the trial wave function.
simultaneously calculate properties of many excited stateslere we are interested in groumahd excited states, so we
with a single random walk. begin by choosing a basis of trial wave functions that repre-

In this article we discuss how to extend the correlationsent our bestanalytio approximation to the spectrum of
function method to include complex Hamiltonians and wavestates that we wish to examine. In the correlation function
functions, and apply this new approach to the case of aMC method, one projects this basis with the exponential of
isolated helium atom in a very strong magnetic field. Onethe Hamiltonian operator using random walks. Matrices

formed by the resulting autocorrelation functions evaluated

during the random walk are then solved for the energy spec-

*Present address: Theoretical Division, T-11 MS B262, Los Ala-trum and other properties. The eigenvalues converge to the
mos National Laboratory, Los Alamos, NM 87545. exact energies of the system in the limit of infinite imaginary

II. THE CORRELATION FUNCTION
MONTE CARLO METHOD
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time, but the variance of the energy grows both exponenwherey is a real valued, non-negative function. The matri-
tially in time and excitation energy. Thus, in practice, thisces in terms ofs then become
method is limited by the size of the system and the number

of excitations of a given symmetry. Our presentation of the _— ,

correlation function method is necessarily brief; see R&f. Hik(t):f dRAR'F} (R)G(R,R";t)

for further details of the method. Here we introduce the for-

malism required for complex Hamiltonians. XEW(R)F(R")y&(R’), (8)

Given a basis seff;} of m linearly independent states
which approximate the lowest energy states of our system, . ) o,
the exact eigenfunctions can be approximated in terms of thi§jk(t):J dRAR'F{ (R)G(R,R";HFW(R")Yg(R"), (9
basis,

m whereF;=f;/ys and Eizfi’lﬂfi is the local energy of the
®,(R,0)= E dijf;(R), (1) individual basis states. Note th&f is in general a complex-
j=1 valued function ofR.

Because the Green’s function is an exponential operator,
whereR=(r,r,, ... ry) represents a point in the configu- we can expand it in terms of an Euclidean path integral
ration space ofN particles. The variational theorem asserts
that upper bound$17] to the exact energieE”, can be n
determined by finding the stationary points of the Rayleigh G(R,R’;t)=j dR; ...dR,_1I] G(R;.Rj_1;7),
quotient =1 (10

_ [dR®}(R,0)H®;(R,0)

( whereRy,=R’, R,=R (the complete path consists ofin-
i - * ’
JdR®T (R,0)®;(R,0)

dividual stepg andt=n7. At sufficiently largen (small 7)
we can write down accurate approximations to the Green'’s

with respect to the coefficients; (Fl is the Hamiltonian of ~function, and sample it with diffusion Monte Carlo.

the system under consideratjomhe size of the basis set Dur,ing the_ random walk. we _sampl_e fr(_)m a diffl_Jsion
m determines the maximum number of excited state energi¢§re€en’s functionGy(R;,R;_1;7) with a time intervalr, it-

)

that can be bounded. eratively constructing a trajectory of configurations
Let us use the imaginary time density matrix to find a nem R1: - - - Rp}. (p is the total length of the random walk
basis, distributed according to the distribution
~ ~ |
fH(R,t)={e""M2f}(R,1), 3
thiRO=1e THRHRY © PR)= &R T GuRy Rvim), (1)

a basis in which the higher energy components have been

reduced relative to the lowest energy states mereases. If  wherel<n. The matrices are evaluated over the course of
we makeA;(t) stationary with respect to the expansion co-each trajectory as

efficients{d;;(t)}, we arrive at a matrix equation for each

eigenvectod! = (d;;,d;5, . .. dim),
I = (dha iz im) ij(lf)zfdRO...dR|hjk(|T)P(R|), (12)
Hdi:AiSq, (4)
where the matricesl andS are given by Sik( 7')=J dRg . . .dRis(I1)P(R). (13

H,—k(t)=J deR’fJ-*(R)<R|I:|e*“3'|R’)fk(R’), (5) A single random walk can compute all of the matrix ele-
ments simultaneously, the correlation between the fluctua-
tions inH and S will reduce the statistical error of the esti-

Sjk(t):f deR’ff(R)(Rle*tH|R’)fk(R’). (6) mated elgenvalu_e. The estimates of_ the matrices are then
given by comparing Eq$12) and(13) with Egs.(8) and(9),

Solving Eq.(4) allows us to project out the lowest energy p—I
states Whilg simul_taneously enforcing orthogonality through hj(17) = >5=T) > Wi o4 1FF (Rn)Fi(Ra+1)
the generalized eigenproblem process. (p—Di=1
To reduce the statistical variance in the Monte Carlo *
evaluation ofH and S one introduces importance sampling X[Ex(Ra+) +Ef (Ry) ], (14
by multiplying and dividing by a guiding functiogyg . We ol
will assume thatf is normalized. The importance-sampled _ .
Green'’s function is given by Si(Im)= p—1 & Whn+1Fj (Rn)FW(Ras), (19

G(RR';t)=ys(R(RleFRNYGIR), (7))  where
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' on the(linear operators we can consider the evolution as the
Wn,n+|=]_[ G(Rnti Rnti—1:1/Gq(Rp+i ,Rusi—1:7). product of the evolution of each of the operators separately.
=1 Hence a short-time solution to E@Q1) is given by the prod-
(16) uct of the three Green’s functiofisorrections ared(72)],

Note that the weight&V will, in general, be complex C—

Valued, gtS¥hnn+ g P G(R;.Rj_1;7)= GGG, (22)
Since the noise is not Hermitian, statistical fluctuationsynere

can be further reduced by using the Hermitian property of

the matrices, symmetrizing as in Gu(R, ,Rjil;T):(ZWT)—sN/ze—(RJ-—Rj,l—TFQ(RH»Z/zT,
hj= 2 (hj+ i), (17 (23

app_lied_direct!y to the e;timator in !5(414). This recombi- Gu(R; 1R171§T)=e*T[(EL<R1>+EL(RJ-71>)/2—ET], (24)

ek 1 lso applied (e, and Ea19, e Gu(R, Ry AR (g

The eigenvalues {A;(t)} converge monotonically _ | ) h q
(A,(t)=E®*,Vt) to the exact energieE®} in the limit of Q= ~VRINYg is  the  quantum  force,  an

infinite imaginary time, EL=¢s'(—2Va+V+0-B)yg is the local energy of the
guiding functionwithout the contribution from the vector
lime_..A(t)=E, (18 potential, which is taken into account B . One can verify
that this G satisfies Eq.(21) for infinitesimal times7 by
dA;(t) substituting it into the master equation Eg1) and perform-
dt <0, Vt. (19 ing a Taylor expansion for smait—R’, keeping only terms

of linear order in7. In this limit of short time steps the
The correlation function Monte Carlo method has the im-solution to Eq.(21) is equivalent to considering the local
portant zero variance property of the energy; as the basis séfergy and quantum force as constant in the neighborhood of
approaches the exact eigenstates, the variance of the edi- The midpoint evaluation of the vector potential @y, is
mates of the eigenvalues approaches zero. necessary to obtain the correct form of the Sdimger equa-
tion (a problem related to the Ito integril8]).

A. The Green'’s function for charges in a magnetic field

. . B. Choi f th iding f i
Thus far we have described the general correlation func- Choice of the guiding function

tion Monte Carlo method for ground and excited states. Here Since the matrix elements depend upon the inverse of the
we discuss the principal changes that must be introduced t@uiding functiony, it is essential, to avoid large statistical
the method to accommodate complex-valued states. Specidluctuations, that our choice fof has no nodes that might
izing now in the case of nonrelativistic charges in an externabe encountered by a random walkr more correctly if the
vector potentialA (VX A=B, whereB is the external mag- ratio ®; /¢ diverges at some value &, then it is possible

netic field, the Hamiltonian igin hartree atomic unils that the variance will also divergeThis fact generally rules
N out simply assigning/g to one of the basis states in the set
. (a-j-Hj)2 {f;}. We would like ¢ to reflect the properties of the entire
H :J.Zl 2 +V, (20 spectrum of ground and excited states in such a way that we

can accurately calculate a number of states together. As
wherea; denote Pauli spin matriceHl=p+A is the kinetic shown in CB the minimization of the mean squared variance
momentum, an¥ is the total potentiafwhich includes one- V() =Z{L,%i(t) with respect toyg, at small imaginary
and two-body interactions Without the loss of generality, times, results in an expression for the optimal guiding func-
we will only consider particles living in three spatial dimen- tion under certain assumptions. On the other hand, it was

sions. found useful in our released-node calculations of atoms to
The importance-sampled Green’s functidy. (7)] satis- add a term to the guiding function proportional to the full
fies (in a gauge covariant form electron densityf19]. We have thus chosen to use the fol-

lowing form for the guiding function:

1/2

1
dG(RR ;1) =—=Vr{—-VG+2G[ VI —iA m
(GIRRID= =5 Vel = VrGT2CIVAIN(e) ~IAT seR1=Cyl col] p(rp+ 3, lfi(RIZ| . (@9)

—(Ef(R)—EpG, (21)

R wherep=3}_,|¢? is the single state electron density de-
where V=3V, , E = ¢*Hyg, andEr is a trial en-  rived from a Slater determinantal many-body wave function
ergy, chosen to be real valued. (i are the single particle orbitals coming from a mean-field

All but the term involving the vector potential of this calculation, for example, from HF The coefficientC,, is
expression for the Green’s functigand the fact thaE, is  added to make the normalization ¢§ explicit. Note that if
complex valuegl are commonly used in diffusion Monte all of the states have a common node, then so will the guid-
Carlo. Trotter's theorem asserts that under weak conditiongg function. Adding this first term avoids this complication.
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This form for ¢y has a parameter governing the amount ofset of desired projection timef 7} are chosen. A set of
overlap with any given state. We have also implemented #nitial configurationgR,} is generated, distributed according
variational method for choosing the coefficiedfts} such  to y2.
that the sum of the variances of the individual states is mini- (ii) A single configuration from the sdR,} is evolved
mized (this method is also used for generating the set obver a very large numbep] of time steps. At each time step
initial configurations distributed according t,mé). For the  the new configuration is chosen accordingGg (as in Ref.
application considered below, however, the variances of thgl]). Instead of branchingas in diffusion Monte Carlg we
highest excitations dominate, so it is often possitd@d compute weights and evaluate correlation functions between
faste) to tune the paramete{s;} by hand. In fact we do not the basis states. At each point along the walk, the quantities
believe that the above form is optimal, but it does appeafF;, E;, E_, and W are stored into the past in a circular
satisfactory. If one chooses=0 then there are unaccept- buffer whose length is determined by the longest desired
able large fluctuations, particularly at stronger magnetigrojection time. The estimatots ands are updated accord-
fields, due to the possibility ob; /¢ becoming divergent. ing to Egs.(14) and(15). At the end of the random walk, the
matrix equation,

C. Evaluation of expectation values hd=\;sd (33)
The computation of matrix elements other than the energy

was not considered in CB; however, they are easy to obtairis solved for each projection time.

Define the projected, orthogonalized basis functions as (iii ) We repeat the preceding step for as many configura-

o tions Nt as desired. One can vectorize or parallelize to im-

~ prove performance, by simultaneously evolviig walks in
q’i(R’t):JZl d;j (O f;(R,1). (27) parallel, thereby obtaining completely independent estima-
tions of the matricetd and S and independent estimates of

The projected basis functions converge exponentially fast t§€ eigenvalues.

the exact functions From the independent estimates of the eigenvalues one
determines the variance and the bias in the eigenvalue. The

lim ®;(R,t) =D, (28)  bias arises because the eigenvalues are nonlinear functions of

oo the quantities averaged. We have used the simplest form for

the bias estimatf4],

To illustrate the general approach, consider the matrix ele- Ny

ment of a local scalar observab® R) between two exact _ AN A _

statesb , and® ;. The expectation value of such an operator b azl NN A') / (Nr=1). 34
which does not, in general, commute with the Hamiltonian

can be computed as the large time limit of whereA; is determined from the averaged matrices, summed
over the total number of trajectorids;, each having eigen-
values given by{A{"}.

The variance grows exponentially with imaginary time as
we shall explore further in Sec. Ill. Note that the points along
m each trajectory will be distributed according” necessitat-

=_2 dyd, O;(t), (30 ing a careful choice of the guiding functiof; . An inappro-
hi=1 Al priate guiding function will have little overlap with the de-
sired states or could have a highly fluctuating weight factor.

<a|©|ﬁ>=f dR®%(R,1)O(R)® 4(R,t) (29)

where writing in coordinate space we get

R I1l. APPLICATION TO ISOLATED HE ATOMS
oij(t)=J dRdR’dR"F* (R)G(R,R’;t/2)O(R’) IN A MAGNETIC FIELD

The Hamiltonian in atomic units for an atom in a constant

’ ”. "y, 1.2 "
XG(R",REH2)F;(R") §ig(R"). (32) magnetic field of strengtB is given by

This matrix is estimated using the same trajectory, vZ 7 2
I

N
A=, |- 5 - S oayh) |+ AL+ 28)
0(17)= 57 2 WantF (Rn)O(Rn 1) Fj (R
+ , 35
(32) 1<i<j=N [jj 9
Hence the scalar is evaluated midway between the two end

[ =sN o S=3sN g
points. For convenience one take® be an even integer. wherel,=2;_,/i; andS, =2 - ,s;, are thez component of
the total angular momentum and spin of the system, respec-

tively, and lengths are in units of the Bohr radiag. The

magnetic field is parametrized by,82=ea(2)B/2ﬁcZ2
To summarize the CF algorithr(i) The basis stategypi- ~ =B/BoZ?=8/Z2, where By=4.7x10° G, and Z is the

cally from some other method such as a Hartree-Fackl a  charge of the nucleus. We will focus on the “strong” field

D. Summary of the numerical algorithm
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regime, 102<p,<1, where Coulomb and Lorentz forces 0.0002

are of equal importance, precisely the region of interest for — 1s2s
astrophysical applications. We have chosen the magnetic 5015 1 | o 1s3s
field to be parallel to the axis, and the symmetric gauge, __ 1s4s
which has vector potentigh=B(—Yy,x,0)/2. Later we will 0.0001
consider the implications of choosing another gauge.

In the absence of external fields, the eigenvalues of 55105

L2 [,, 8, S,, and parity,I1, are good quantum numbers.

LI L L L L L LB

When the magnetic field is turned on, the rotational invari- = . e 0
ance is broken and the only cons?rved guantum numbers are% 0.03 r [units of a,]

the eigenvalues di,, $2, S,, andII (alternatively, we will ST

use thez parity %Z). We will include the zero field designa- 0.02 3 O'oomg | _

tion of ground and excited states along with the strictly cor- s, Gt l\ 8,=01

rect quantum numbersL¢,,,S,) to allow for an easier 0.01 sxio \

comparison with the more familiar zero field situation. For ' % m > P
simplicity we only report calculations here for the quantum /ﬁ\ x [units of a,]
numbersS=1, S,=—1, andL,=—1,0[11]. 0 0 ""**Lz‘o e 3'0 T

z [units of a,]
A. The basis states

When choosing basis states it behooves us to pick func- FIG- 1. The HF electron densiyn atomic unit$ in the longi-
tions that most closely approximate the exact eigenstates. V\}gdlnal (2) and transversex| directions for the first three excited
have chosen to use wave functions arising from our rece tates of neutral helium that are spherically symmetric at zero field
Hartree-Fock(HF) calculations[12], multiplied by a stan- (top ploY). The bottom plot shows the resulting anisotropy in the

! electron density when a field @,=0.1 is applied.

dard[1] two-body Jastrow factor. They are the most accurate

calculations, to date, of the ground and excited state spec- _ o

trum of helium in strong fields. Since the HF wave functionsSystematic errors to be smaller than our statistical errors.
are expansions in a basis set of Slater type orbitals, howeveRelativistic and finite nuclear mass effects are also very
they suffer from inaccuracies due to finite basis set size. Thigmall. We also tested that our RP procedure recovered the
finite basis size effect restricts the number of excitations of &1F results at zero projection time, and that the results were
given symmetryabout thregfor which we can obtain good
error bars €10 2 hartreg, and also limits the maximum

As mentioned above we have used the guiding function of
Eq. (26). In general,c, is increased as the magnetic field
strength is increased, due to the fact that the points at which
the individual basis states vanish grow more confined. This
behavior can be seen in Fig. 1, which shows the HF electron &, _5 g3
density for the first three states of symmetry &
(L,,7,,S)=(0,+,—1) at both zero field (top) and M _2.832
Bz=0.1 (bottom). Note that the strong field confines the
electrons nearer to the nucleus, heegemust often be in- -=2.834 } } }
creased to prevent numerical instabilities caused by common ogag [ e
nodes among the basis stafég. For the other coefficients, T
¢; (i>0), one typically chooses ascending valfés ex- _2838
ample,c;=0.1,¢,=0.5,c3=1.0) such that the random walk L v b Lo b o by o |
also explores the region more distant from the nucleus. This 0 0.2 0.4 0.6 0.8 1
choice helps sample more efficiently the more highly excited t [hartree=1]
states, and avoids getting stuck in pockets of phase space.

—2.486

field strength that we can study3{~1). Notice, however, _o48 [ 8,=0.1 -
that a different basis sdff;} could be chosen foB,>1 w{i |
using the adiabatic approximation. These limitations do not -2.482 I -
preclude an exact solution when RP is used, they only affect I i
statistical fluctuations. —R.484 B

LA B L L B L |

—2.488

L v by v b b by
(L,m .S )=(-1,+—1)

2’ 2z

hartree]
U};

LI I S B B
——
e
PN O I

FIG. 2. A typical RP calculation for the helium atoms2p_,
B. Results for neutral He statg at 8,=0.1, showing the convergence of the first two excited
] states in imaginary time. The dotted line indicates the fixed-phase
As a test of our RP method we evaluated excited stat@esults for that state. The FP value is in close agreement for the
energies for He at zero magnetic field strength. Comparisoground state, but is too low for the second state due to overlap with
with extensive variational calculations of the nonrelativisticthe lower state. This illustrates the nonvariational character of FP
helium atom, which are essentially “exact” and with the when applied to excitations. The short line segmertt=ad is the
experimental values gave complete agreement, showing theF energy value.
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F e t=1.0000 r
o F 1s5p_, — £=0.1000 r s 1s2p,
E A - - - t=0.0025 0.0001 £ 1<3
- e o 1S
5 K ~ "an C po
ey R . o N
o Bttt e I * 1s4p,
F ls4p_ -5
N 1 g
—~ 5 . . A -
2 P o T " v”" vi B
e gy NEV 1o-s |
~ E 1s3p_ = £
= 10 ! - C
C /N L
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C . ! "IN\,/“ -
0 K-M“"‘v‘““(‘“»‘a“‘**M’WWW‘“W"’"”w, TP v 1o E
é 1s2p_, E
= 1078 =
K N T R R B
-2 0 2 0 0.25 0.5 0.75 1
Ap(t) t [hartree!]
FIG. 3. The probability distributior ¢ at three increasing val- FIG. 5. The increasing variance as a function of projection time

ues of imaginary time¢=0.0025, 0.1, 1.0 for several excited states and excitation energy for the first three excitations of
over the course of the random walk in a typical RP calculation, agL,,,,S,)=(0,+,—1) symmetry in helium a8,=0.3. Zero field
defined in Eq.(36). Ny is the number of points along the path quantum numbers are given in the key at the top of the plot. Note
taking on a particular value of¢. Note that broadening of the that the variance of the energnyi>, grows with projection time
distribution occurs more rapidly for the higher excited stdtep).  ang excitation energy. The initial decrease in the variance is due to
independent of time step. Further tests were performed Otrpe |mpr0vemt_ant of the wave fu_nctlon at short imaginary times. The
. -lines are provided only as a guide to the eye.
the excited state spectrum of neutral hydrogen atoms in
strong fields. Using fairly crude approximations for the ex-
cited states we were able to recover the known energies ¢tom at3z=0.1 of the {,=—1, 7=+, S,=—1) symme-
the low-lying excitationg10]. try. In this example 50 independent trajectories each with a
Turning now to strong magnetic fields, Fig. 2 shows thetotal time of 1.5 (atomic unit3 (N;=50, p=600000,
convergence of the first two excited states of the helium7=0.0025) were used. At zero time the energy is the varia-
tional energy, in this case the self-consistent-field HF energy
of the first two basis states. As we progress in imaginary
1s5p_; ——— £=0.1000 time the energy drops and the variance grows. The energy

1s4p_,

ln(Nhits)
o

Ep [hartree]

25 L N I
I I I I

0 L P I T W S R T [ I ! -5
-20 -15 -10 -5 0

Ar(t) L

FIG. 4. The probability distributiorAr at three increasing val-
ues of imaginary timé=0.0025, 0.1, 1.0 for several excited states By
over the course of the random walk in a typical RP calculation, as FIG. 6. The neutral helium energy spectrum using RP. The lines
defined in Eq.(36). Note thatAr shows little dependence on the are spline fits to our data, included in Table I. Three states were
imaginary time. evaluated for each of the four symmetries shown.
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clearly converges before the variance gets too large. creases, and there are many level crossings as the field grows
The reason why the variance grows is shown in Fig. 3Jarger. At a zero applied field, our calculated energies repro-

which plots the change in the phadep, of the first three duce the results of extensive variational calculatip?g].

excited states of symmetryL{,7,,S,)=(—1,+,—1) at The data for the energies shown in Fig. 6 is included in

B2=0.1 for a sampling of elapsed times. Define the changeaple I.

in magnitude and phase for a particular state as

Ar+iAgj(mr)= ln[Fik(Rn)Wn,n+ij(Rn+m)]- (36) C. Accuracy of the HF and FP approximations
Using converged energies we are now able to determine

Figure 3 shows a histogram of this phase change determindf® accuracy of the HF and fixed-phase approximations for
over the course of the random walk. Note the spreading oftoms in strong magnetic fields. With increasing magnetic
the phase with increasing imaginary t|nﬁé‘ie zero time field Strength, the errors in the HF energies grow due to the
value is simply a spike at zeroFor this particular calcula- combination of basis set truncation erf@?2] and increasing
tion, the longest time at which data could be meaningfullyelectron correlation. Figure 7 shows the difference between
gathered was approximatety=mr=1.0. A similar plot for  the RP and HF results for the first three excitations of all four
the magnitudéshown in Fig. 4 Ar, does not show the same symmetries considered thus far. The truncation errors in the
behavior at increasing times, or with increasing excitationrHF results make it difficult to isolate trends in the RP-HF
energy. This general result illustrates the fact that the domidifferences. Since we therefore do not get the true HF en-
nant contribution to the increasing variance comes from thergy, we can not accurately determine the correlation energy.
change in the phase. Figure 5 shows the typical behavior ofFhe basis set errors are also the dominant contribution to the
the variance at long times for several excited states. Not®IC variances. Improved basis sets would lead to smaller
that, as expected, the variance is much larger for the morerror bars for our RP energies.
highly excited states. Figure 8 shows a comparison between the FP and RP
Figure 6 shows the energy spectrum for neutral heliumgnergies for the two lowest states of all four symmetries
including the first three excited states of each symmetry haveonsidered thus far. We note that, within error bars, the FP
ing L,=0 andL,=—1. Note that the separation between and RP results are equal for the lowest symmetry gtaweer
states of the same symmetry grows larger as the field inplot) except for 8,=1, implying that the fixed-phase ap-

TABLE |. RP energiesErp, for He in theL,=0, 1, S,=—1 states in hartree. Numbers in parentheses are the uncertainties for each
energy. Quantum numbert f,7,,S,) are at the top.

(0,+,—-1) (-1,+,-1)
1s2s 1s3s 1s4s 1s2p_ 1s3p_1 1s4p_4
Bz —Ere —Ere —Ere Bz —Ere —Erp —Ere
0.0000 2.175@6) 2.06872) 2.036581) 0.0000 2.133®) 2.05813) 2.03232)
0.0010 2.183(®) 2.076Q1) 2.04134) 0.0010 2.1437) 2.06894) 2.04073)
0.0100 2.243®) 2.12091) 2.06879) 0.0100 2.238(®) 2.12195) 2.08099)
0.1000 2.573®) 2.439%9) 2.3497121) 0.1000 2.8356k) 2.48585) 2.385217)
0.2000 2.8660) 2.733@8) 2.666526) 0.2000 3.307&) 2.801%5) 2.695@12)
0.3000 3.122%) 2.975111) 2.835729) 0.3000 3.691@) 3.061&7) 2.89617)
0.4000 3.346(8) 3.191213) 3.040@26) 0.4000 4.017®B) 3.290%9) 3.1425%36)
0.5000 3.542®) 3.3855811) 3.219710) 0.5000 4.304%) 3.48865) 3.278213)
0.7000 3.890%) 3.706931) 0.7000 4.7988) 3.82918)
1.0000 4.32065) 4.116919) 1.0000 5.407@3) 4.243632)
(0,—,-1) (-1,—-,-1)
1s2p, 1s3pg 1s4p, 1s3d_, 1s4d_; 1s5d_;
Bz —Erp —Erp —Ere Bz —Ere —Erp —Erp
0.0000 2.133®) 2.05812) 2.03232) 0.0000 2.055®) 2.031%9) 2.01989)
0.0010 2.14088) 2.065%5) 2.035@10) 0.0010 2.067®) 2.04139) 2.0268&7)
0.0100 2.205(®) 2.110@3) 2.057814) 0.0100 2.141Q) 2.09122) 2.06249)
0.1000 2.6390) 2.4548%6) 2.392%7) 0.1000 2.559@7) 2.436912) 2.350414)
0.2000 2.987®) 2.759&8) 2.67496) 0.2000 2.896@) 2.73948) 2.643817)
0.3000 3.271®) 3.01288) 2.902120) 0.3000 3.171¢) 2.994811) 2.878516)
0.4000 3.513&) 3.236513) 3.117717) 0.4000 3.407®) 3.209213) 3.030730)
0.5000 3.723©) 3.43566) 3.317332 0.5000 3.618&0) 3.3967021) 3.164@31)
0.7000 4.087(®) 3.755@12) 0.7000 3.975@) 3.720320)

1.0000 4.5314) 4.16518) 1.0000 4.421419) 4.10749)
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' ' 8 ' ' FIG. 9. Dependence of the variance on the gauge in a typical RP
Z

calculation. The vector potential is given By=B(fy,(1+ f)x,0).

. Shown is the variance of
FIG. 7. Energy differences between the RP and HF results, fOELZ,TrZ,SZ)=(O,+,—1) state a3,

the first three excitat_ions of all four symmetri_dsz:O,—_l, the data points ).
S,=—1, m,==*. Zero field quantum numbers are included in the

key in the upper part of the plot. Error bars are approximately th . .
same size(or smallej than the symbols. The line connects thee[he higher excited stat@ipper ploj are generally lowebut

1s3d_, data (A), and is provided only as a guide to the eye. The not uniforrr_lly_ lowey than the exact_energies_. Since FP is no
spread in the data points is due to the incomplete convergence J)(?ng_er variational for the more h!ghly excited S’Fates of a
the HE calculations. particular symmetry, and the error is not very predictable, the
RP method is necessafgnd crucial for an accurate deter-
mination of the excited state energies.

the energy of the first
=0.1. The line is a spline fit to

proximation is a good one for the lowest-lying excitations of
the helium atom, at least over most of the range of magnetic
field strengths studied thus far. The difference at larger val-
ues of B8; can be attributed to the fact that the HF phase Thus far we have neglected the role of gauge freedom,
function is inadequate. We also note that the FP results fosind simply chosen to use the symmetric gauge
[A=B(—Y,x,0)/2] throughout. Certainly any physical ob-

servable must be independent of the choice of gauge, but it

D. Gauge dependence

= . was suggested by Zhang, Canright, and Bafié$that the
r o] a .
r 7 gauge could be used to lower the variance of the energy. The
—0.05 & results of Zhang, Canright, and Barnes were based on lattice
r 3 g MC calculations for a tight binding model, for which they
o C a1 1) tested two choices of gauge, one of which varied consider-
o Ol o (-1,--1) ably more than the other for a typical MC move. They found
i o ng':}g [ that the gauge which varied the least on average during the
& 015 - .. |second | L random walk(the gauge more evenly distributed over space
= ooz had MC averages with much smaller error bars.
i i % It is clear, however, that the statistical variance is gauge
N L invariant in the following sense. If we consider adding a
001 many-body gauge and simultaneously change the phase of
r % 3 the basis set,
or % { A—A+VA,, (37
R R N oA B B LA
0 0.2 0.4 0.6 0.8 1 fi—me '7af;, (38)
B2

the total contribution to the matrix elements will be invariant

FIG. 8. A comparison between the FP and the RP results for th@nd, hence, the eigenvalues and variances will be unaffected.
first two excited states of L(,7,,S)=(—-1,£,-1)
(0,+,—1) symmetry as a function of magnetic field strength. Thegiven gauge, shifting the gauge will change nothing. If the
line connects the points of{(1,+,—1) symmetry, and is provided basis set is nonoptimized or optimized for a different gauge,

only as a guide to the eye.

and

Hence, if the basis set is optimizéday within HF for a

then a gauge transformation could have an effect.
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There is another way the gauge could affect the effi-has a wide range of potential physical applications, of which
ciency. The accuracy of the short-time Green’s functionsve have selected magnetized atoms as an important example.
[Eg. (22)] could depend on the gauge. We neglect commuWe have thus been able to determine the ground and excited
tators between the vector potential and the kinetic energy istate spectrum of neutral helium in fields up td°1G with
making the Trotter breakup. Gauges with smooth values o&in unprecedented level of accuracy, a necessity for matching
A will have smaller time step errors. astrophysical observations of spectra from compact stellar

We have tested the effect of the gauge for the heliunremnants. The RP technique, however, is limited in its scope
atom by generalizing to an “elliptic” gaugéout still satis-  of application to small systems with relatively small excita-
fying V-A=0), tion energies. By generating more accurate basis sets and

guiding functions we hope to be able to apply this method to
A=B(fy,(1+1)x,0), (39  larger atoms such as carbon, for which accurate spectral cal-
culations in strong magnetic fields do not yet exist. We will
resent more extensive improved RP calculations for neutral
elium elsewher¢21], and discuss the relevance to the ob-

wheref=—1/2 corresponds to the symmetric gauge. Figur
9 shows a series of RP calculations with various values fo

f for the (L.Z’WZ’_SZ):(O’“L’_l) symmetry aif;=0.1and o164 spectrfd]. Bayesian methods can also be used to aid
projection timet=1.0. We see that thelvarlance is m|n|m|zed in the extrapolation to large projection img22]. Although
for f~—1/2, the symmetric gauge, with the largest varianc&ye have implemented the RP method for particles in the

at the extreme$=0 andf=—1. This result is a demonstra- .qn¢inyum, the approach can easily be extended to fermions
tion that the symmetric gauge minimizes the variance whepy, 4 |attice.

using our form for the short-time Green'’s functigeq. (22)]
and HF basis states. ACKNOWLEDGMENTS
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