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Released-phase quantum Monte Carlo method
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The correlation function Monte Carlo method for calculating ground and excited state properties is extended
to complex Hamiltonians and used to calculate the spectrum of neutral helium in a wide range of magnetic
fields, a system of particular interest in astrophysics. Correlation functions in imaginary time are evaluated for
a set of trial functions over a random walk whose dynamics is governed by the imaginary-time Schro¨dinger
equation. Estimates of the exact energy spectrum and other expectations are made by diagonalizing the matrix
of correlation functions. Using the exact results of this ‘‘released-phase’’ Monte Carlo approach, we assess the
accuracy of the fixed-phase quantum Monte Carlo and Hartree-Fock methods for the helium atom in strong
magnetic fields.@S1063-651X~97!07605-8#

PACS number~s!: 02.70.Lq, 31.10.1z, 32.60.1i, 71.10.2w
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I. INTRODUCTION

If the Hamiltonian of a physical system is real, then it
always possible to construct wave functions that are r
With the addition of a magnetic field the ground state will,
general, be complex valued. Quantum Monte Carlo simu
tion is difficult unless the wave function can be made r
and non-negative because the wave function is interprete
a probability distribution. For real-valued wave functio
one uses thefixed-node@1# approximation to calculate state
which are the ground states of a given symmetry but are
positive. For complex-valued states, the analogous metho
the fixed-phasequantum Monte Carlo~FP! technique devel-
oped by Ortiz and co-workers@2,3#. It assumes atrial phase
of the complex many-body wave function, and exactly solv
the resulting equation for its modulus using random walk

As is the case with the fixed-node approximation, o
does not know internally the quality of the trial phase. F
real wave functions one can calculate the exact energy
allowing the walks to cross the nodal surface. There are
related methods for relaxing the fixed-node constraint in
fashion, called the transient estimate and the release-n
methods. For estimating excited states, one must also
the states orthogonal to lower states of the same symm
This is accomplished by a method called correlation funct
Monte Carlo, introduced by Ceperley and Bernu@4# ~hereaf-
ter referred to as CB!, and applied to small molecules@5# and
the excitations of the two dimensional electron gas@6#. It has
also been used to determine eigenvalues of classical
systems@7#. An advantage of this method is that one c
simultaneously calculate properties of many excited sta
with a single random walk.

In this article we discuss how to extend the correlat
function method to include complex Hamiltonians and wa
functions, and apply this new approach to the case of
isolated helium atom in a very strong magnetic field. O

*Present address: Theoretical Division, T-11 MS B262, Los A
mos National Laboratory, Los Alamos, NM 87545.
551063-651X/97/55~5!/6202~9!/$10.00
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can view this extension of the correlation function approa
as a relaxation of the fixed-phase constraint~hence,
‘‘released-phase’’!, while simultaneously evaluating man
excited states. We first review the CB technique and disc
the changes that need to be made in the method to
complex-valued Hamiltonians and wave functions. Sam
calculations using the released-phase~RP! Monte Carlo
method are then presented for helium atoms in a magn
field, which to date have only been studied with relative
inaccurate mean-field methods.

Neutral helium has been suggested as a possible exp
tion for unexplained spectra of some magnetic white dw
stars@8,9#, where the field can be as strong as 1011 G. Pre-
vious calculations for helium in strong magnetic fields usi
Hartree-Fock~HF! @10,12# methods have not been suffi
ciently accurate, and the fixed-phase method is no lon
variational for excited states. Two electron systems also
cur as excitons in certain semiconductors@13#. We use our
application to magnetized helium atoms to study the e
ciency of the released-phase quantum Monte Carlo appro

Although in this paper we focus on helium, the R
method is sufficiently general for application to any proble
with a spectrum of complex valued eigenstates, such
quantum dots@14# and anyons in a magnetic field@15,16#.

II. THE CORRELATION FUNCTION
MONTE CARLO METHOD

Zero temperature quantum Monte Carlo~MC! methods
typically begin with the choice of the trial wave function
Here we are interested in groundand excited states, so we
begin by choosing a basis of trial wave functions that rep
sent our best~analytic! approximation to the spectrum o
states that we wish to examine. In the correlation funct
MC method, one projects this basis with the exponentia
the Hamiltonian operator using random walks. Matric
formed by the resulting autocorrelation functions evalua
during the random walk are then solved for the energy sp
trum and other properties. The eigenvalues converge to
exact energies of the system in the limit of infinite imagina
-

6202 © 1997 The American Physical Society
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55 6203RELEASED-PHASE QUANTUM MONTE CARLO METHOD
time, but the variance of the energy grows both expon
tially in time and excitation energy. Thus, in practice, th
method is limited by the size of the system and the num
of excitations of a given symmetry. Our presentation of
correlation function method is necessarily brief; see Ref.@4#
for further details of the method. Here we introduce the f
malism required for complex Hamiltonians.

Given a basis set$ f j% of m linearly independent state
which approximate the lowest energy states of our syst
the exact eigenfunctions can be approximated in terms of
basis,

F i~R,0!5(
j51

m

di j f j~R!, ~1!

whereR5(r1 ,r2 , . . . ,rN) represents a point in the configu
ration space ofN particles. The variational theorem asse
that upper bounds@17# to the exact energiesEi

ex , can be
determined by finding the stationary points of the Rayle
quotient

L i~0!5
*dRF i* ~R,0!ĤF i~R,0!

*dRF i* ~R,0!F i~R,0!
, ~2!

with respect to the coefficientsdi j (Ĥ is the Hamiltonian of
the system under consideration!. The size of the basis se
m determines the maximum number of excited state ener
that can be bounded.

Let us use the imaginary time density matrix to find a n
basis,

$ f̃ i%~R,t !5$e2tĤ/2f i%~R,t !, ~3!

a basis in which the higher energy components have b
reduced relative to the lowest energy states ast increases. If
we makeL i(t) stationary with respect to the expansion c
efficients $di j (t)%, we arrive at a matrix equation for eac
eigenvectordi

T5(di1 ,di2 , . . . ,dim),

Hd i5L iSdi , ~4!

where the matricesH andS are given by

H jk~ t !5E dRdR8 f j* ~R!^RuĤe2tĤuR8& f k~R8!, ~5!

Sjk~ t !5E dRdR8 f j* ~R!^Rue2tĤuR8& f k~R8!. ~6!

Solving Eq.~4! allows us to project out the lowestm energy
states while simultaneously enforcing orthogonality throu
the generalized eigenproblem process.

To reduce the statistical variance in the Monte Ca
evaluation ofH andS one introduces importance samplin
by multiplying and dividing by a guiding functioncG . We
will assume thatcG is normalized. The importance-sample
Green’s function is given by

G~R,R8;t !5cG~R!^Rue2tĤuR8&cG
21~R8!, ~7!
-
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-

,
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wherecG is a real valued, non-negative function. The mat
ces in terms ofG then become

H jk~ t !5E dRdR8F j* ~R!G~R,R8;t !

3Ek~R8!Fk~R8!cG
2 ~R8!, ~8!

Sjk~ t !5E dRdR8F j* ~R!G~R,R8;t !Fk~R8!cG
2 ~R8!, ~9!

whereFi5 f i /cG andEi5 f i
21Ĥ f i is the local energy of the

individual basis states. Note thatEi is in general a complex-
valued function ofR.

Because the Green’s function is an exponential opera
we can expand it in terms of an Euclidean path integral

G~R,R8;t !5E dR1 . . .dRn21)
j51

n

G~Rj ,Rj21 ;t!,

~10!

whereR05R8, Rn5R ~the complete path consists ofn in-
dividual steps!, and t5nt. At sufficiently largen ~small t)
we can write down accurate approximations to the Gree
function, and sample it with diffusion Monte Carlo.

During the random walk we sample from a diffusio
Green’s functionGd(Rj ,Rj21 ;t) with a time intervalt, it-
eratively constructing a trajectory of configuration
$R1 , . . . ,Rp%. (p is the total length of the random walk!,
distributed according to the distribution

P~Rl !5cG
2 ~R0!)

j51

l

Gd~Rj ,Rj21 ;t!, ~11!

where l<n. The matrices are evaluated over the course
each trajectory as

H jk~ l t!5E dR0 . . .dRlhjk~ l t!P~Rl !, ~12!

Sjk~ l t!5E dR0 . . .dRlsjk~ l t!P~Rl !. ~13!

A single random walk can compute all of the matrix el
ments simultaneously, the correlation between the fluct
tions inH andS will reduce the statistical error of the est
mated eigenvalue. The estimates of the matrices are
given by comparing Eqs.~12! and~13! with Eqs.~8! and~9!,

hjk~ l t!5
1

2~p2 l ! (
n51

p2 l

Wn,n1 lF j* ~Rn!Fk~Rn1 l !

3@Ek~Rn1 l !1Ej* ~Rn!#, ~14!

sjk~ l t!5
1

p2 l (n51

p2 l

Wn,n1 lF j* ~Rn!Fk~Rn1 l !, ~15!

where
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6204 55JONES, ORTIZ, AND CEPERLEY
Wn,n1 l5)
i51

l

G~Rn1 i ,Rn1 i21 ;t!/Gd~Rn1 i ,Rn1 i21 ;t!.

~16!

Note that the weightsWn,n1 l will, in general, be complex
valued.

Since the noise is not Hermitian, statistical fluctuatio
can be further reduced by using the Hermitian property
the matrices, symmetrizing as in

hjk5
1
2 ~hjk1hk j* !, ~17!

applied directly to the estimator in Eq.~14!. This recombi-
nation is equivalent to time reversing the path. The sa
trick is also applied tosjk and Eq.~15!.

The eigenvalues $L i(t)% converge monotonically
(L i(t)>Ei

ex ,;t) to the exact energies$Ei
ex% in the limit of

infinite imaginary time,

limt→`L i~ t !5Ei
ex , ~18!

dL i~ t !

dt
<0, ;t. ~19!

The correlation function Monte Carlo method has the i
portant zero variance property of the energy; as the basis
approaches the exact eigenstates, the variance of the
mates of the eigenvalues approaches zero.

A. The Green’s function for charges in a magnetic field

Thus far we have described the general correlation fu
tion Monte Carlo method for ground and excited states. H
we discuss the principal changes that must be introduce
the method to accommodate complex-valued states. Spe
izing now in the case of nonrelativistic charges in an exter
vector potentialA (“3A5B, whereB is the external mag-
netic field!, the Hamiltonian is~in hartree atomic units!,

Ĥ5(
j51

N
~sj•Pj !

2

2
1V, ~20!

wheresj denote Pauli spin matrices,P5p1A is the kinetic
momentum, andV is the total potential~which includes one-
and two-body interactions!. Without the loss of generality
we will only consider particles living in three spatial dime
sions.

The importance-sampled Green’s function@Eq. ~7!# satis-
fies ~in a gauge covariant form!

] tG~R,R8;t !52
1

2
“R$2“RG12G@“Rln~cG!2 iA#%

2„EL* ~R!2ET…G, ~21!

where“R5( i51
N

“ r i
, EL5cG

21ĤcG , andET is a trial en-
ergy, chosen to be real valued.

All but the term involving the vector potential of thi
expression for the Green’s function~and the fact thatEL is
complex valued! are commonly used in diffusion Mont
Carlo. Trotter’s theorem asserts that under weak conditi
s
f
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on the~linear! operators we can consider the evolution as
product of the evolution of each of the operators separat
Hence a short-time solution to Eq.~21! is given by the prod-
uct of the three Green’s functions@corrections areO(t2)#,

G~Rj ,Rj21 ;t!5GdGbGA , ~22!

where

Gd~Rj ,Rj21 ;t!5~2pt!23N/2e2„Rj2Rj212tFQ~Rj21!…2/2t,
~23!

Gb~Rj ,Rj21 ;t!5e2t[ „ẼL~Rj !1ẼL~Rj21!…/22ET] , ~24!

GA~Rj ,Rj21 ;t!5e2 i ~Rj2Rj21!•A„~Rj1Rj21!/2…, ~25!

FQ52“RlncG is the quantum force, and

ẼL5cG
21(2 1

2“R
21V1s•B)cG is the local energy of the

guiding functionwithout the contribution from the vecto
potential, which is taken into account byGA . One can verify
that thisG satisfies Eq.~21! for infinitesimal timest by
substituting it into the master equation Eq.~21! and perform-
ing a Taylor expansion for smallR2R8, keeping only terms
of linear order int. In this limit of short time steps the
solution to Eq.~21! is equivalent to considering the loca
energy and quantum force as constant in the neighborhoo
R. The midpoint evaluation of the vector potential inGA is
necessary to obtain the correct form of the Schro¨dinger equa-
tion ~a problem related to the Ito integral@18#!.

B. Choice of the guiding function

Since the matrix elements depend upon the inverse of
guiding functioncG , it is essential, to avoid large statistic
fluctuations, that our choice forcG has no nodes that migh
be encountered by a random walk~or more correctly if the
ratioF i /cG diverges at some value ofR, then it is possible
that the variance will also diverge!. This fact generally rules
out simply assigningcG to one of the basis states in the s
$ f i%. We would likecG to reflect the properties of the entir
spectrum of ground and excited states in such a way tha
can accurately calculate a number of states together.
shown in CB the minimization of the mean squared varian
V(t)5( i51

m n i(t) with respect tocG , at small imaginary
times, results in an expression for the optimal guiding fun
tion under certain assumptions. On the other hand, it w
found useful in our released-node calculations of atoms
add a term to the guiding function proportional to the fu
electron density@19#. We have thus chosen to use the fo
lowing form for the guiding function:

cG~R!5CcFc0)
i

r~r i !1(
i51

m

ci u f i~R!u2G1/2, ~26!

wherer5(k51
N ucku2 is the single state electron density d

rived from a Slater determinantal many-body wave funct
(ck are the single particle orbitals coming from a mean-fie
calculation, for example, from HF!. The coefficientCc is
added to make the normalization ofcG explicit. Note that if
all of the states have a common node, then so will the gu
ing function. Adding this first term avoids this complicatio
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55 6205RELEASED-PHASE QUANTUM MONTE CARLO METHOD
This form for cG has a parameter governing the amount
overlap with any given state. We have also implemente
variational method for choosing the coefficients$ci% such
that the sum of the variances of the individual states is m
mized ~this method is also used for generating the set
initial configurations distributed according tocG

2 ). For the
application considered below, however, the variances of
highest excitations dominate, so it is often possible~and
faster! to tune the parameters$ci% by hand. In fact we do no
believe that the above form is optimal, but it does app
satisfactory. If one choosesc050 then there are unaccep
able large fluctuations, particularly at stronger magne
fields, due to the possibility ofF i /cG becoming divergent.

C. Evaluation of expectation values

The computation of matrix elements other than the ene
was not considered in CB; however, they are easy to obt
Define the projected, orthogonalized basis functions as

F i~R,t !5(
j51

m

di j ~ t ! f̃ j~R,t !. ~27!

The projected basis functions converge exponentially fas
the exact functions

lim
t→`

F i~R,t !5F i
ex . ~28!

To illustrate the general approach, consider the matrix
ment of a local scalar observableÔ(R) between two exac
statesFa andFb . The expectation value of such an opera
which does not, in general, commute with the Hamilton
can be computed as the large time limit of

^auÔub&5E dRFa* ~R,t !Ô~R!Fb~R,t ! ~29!

5 (
i , j51

m

da i* db j
Oi j ~ t !, ~30!

where writing in coordinate space we get

Oi j ~ t !5E dRdR8dR9Fi* ~R!G~R,R8;t/2!Ô~R8!

3G~R8,R9;t/2!F j~R9!cG
2 ~R9!. ~31!

This matrix is estimated using the same trajectory,

oi j ~ l t!5
1

p2 l (n51

p2 l

Wn,n1 lFi* ~Rn!O~Rn1 l /2!F j~Rn1 l !.

~32!

Hence the scalar is evaluated midway between the two
points. For convenience one takesl to be an even integer.

D. Summary of the numerical algorithm

To summarize the CF algorithm:~i! The basis states~typi-
cally from some other method such as a Hartree-Fock! and a
f
a
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of

he

ar

ic

gy
in.

to

le-

r
n

nd

set of desired projection times$ l t% are chosen. A set o
initial configurations$R0% is generated, distributed accordin
to cG

2 .
~ii ! A single configuration from the set$R0% is evolved

over a very large number (p) of time steps. At each time ste
the new configuration is chosen according toGd ~as in Ref.
@1#!. Instead of branching~as in diffusion Monte Carlo!, we
compute weights and evaluate correlation functions betw
the basis states. At each point along the walk, the quant
Fi , Ei , EL , andW are stored into the past in a circula
buffer whose length is determined by the longest desi
projection time. The estimatorsh ands are updated accord
ing to Eqs.~14! and~15!. At the end of the random walk, th
matrix equation,

hdi5l isdi ~33!

is solved for each projection time.
~iii ! We repeat the preceding step for as many configu

tionsNT as desired. One can vectorize or parallelize to i
prove performance, by simultaneously evolvingNT walks in
parallel, thereby obtaining completely independent estim
tions of the matricesH andS and independent estimates
the eigenvalues.

From the independent estimates of the eigenvalues
determines the variance and the bias in the eigenvalue.
bias arises because the eigenvalues are nonlinear functio
the quantities averaged. We have used the simplest form
the bias estimate@4#,

bi5S (
a51

NT

l i
a/NT2L i D Y ~NT21!, ~34!

whereL i is determined from the averaged matrices, summ
over the total number of trajectoriesNT , each having eigen-
values given by$l i

a%.
The variance grows exponentially with imaginary time

we shall explore further in Sec. III. Note that the points alo
each trajectory will be distributed according toP, necessitat-
ing a careful choice of the guiding functioncG . An inappro-
priate guiding function will have little overlap with the de
sired states or could have a highly fluctuating weight fact

III. APPLICATION TO ISOLATED HE ATOMS
IN A MAGNETIC FIELD

The Hamiltonian in atomic units for an atom in a consta
magnetic field of strengthB is given by

Ĥ5(
i51

N F2
¹ i
2

2
2
Z

r i
1

b2

2
~xi

21yi
2!G1b~ L̂z12Ŝz!

1 (
1< i, j<N

1

r i j
, ~35!

whereL̂z5( i51
N l̂ iz andŜz5( i51

N ŝiz are thez component of
the total angular momentum and spin of the system, resp
tively, and lengths are in units of the Bohr radiusa0. The
magnetic field is parametrized bybZ5ea0

2B/2\cZ2

5B/B0Z
25b/Z2, where B054.73109 G, and Z is the

charge of the nucleus. We will focus on the ‘‘strong’’ fiel
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6206 55JONES, ORTIZ, AND CEPERLEY
regime, 1022<bZ<1, where Coulomb and Lorentz force
are of equal importance, precisely the region of interest
astrophysical applications. We have chosen the magn
field to be parallel to thez axis, and the symmetric gaug
which has vector potentialA5B(2y,x,0)/2. Later we will
consider the implications of choosing another gauge.

In the absence of external fields, the eigenvalues
L̂2, L̂z , Ŝ

2, Ŝz , and parity,P̂, are good quantum number
When the magnetic field is turned on, the rotational inva
ance is broken and the only conserved quantum number

the eigenvalues ofL̂z , Ŝ
2, Ŝz , andP̂ ~alternatively, we will

use thez parity p̂z). We will include the zero field designa
tion of ground and excited states along with the strictly c
rect quantum numbers (Lz ,pz ,Sz) to allow for an easier
comparison with the more familiar zero field situation. F
simplicity we only report calculations here for the quantu
numbersS51, Sz521, andLz521,0 @11#.

A. The basis states

When choosing basis states it behooves us to pick fu
tions that most closely approximate the exact eigenstates
have chosen to use wave functions arising from our rec
Hartree-Fock~HF! calculations@12#, multiplied by a stan-
dard@1# two-body Jastrow factor. They are the most accur
calculations, to date, of the ground and excited state s
trum of helium in strong fields. Since the HF wave functio
are expansions in a basis set of Slater type orbitals, howe
they suffer from inaccuracies due to finite basis set size. T
finite basis size effect restricts the number of excitations o
given symmetry~about three! for which we can obtain good
error bars (&1023 hartree!, and also limits the maximum
field strength that we can study (bZ;1). Notice, however,
that a different basis set$ f i% could be chosen forbZ@1
using the adiabatic approximation. These limitations do
preclude an exact solution when RP is used, they only af
statistical fluctuations.

As mentioned above we have used the guiding function
Eq. ~26!. In general,c0 is increased as the magnetic fie
strength is increased, due to the fact that the points at w
the individual basis states vanish grow more confined. T
behavior can be seen in Fig. 1, which shows the HF elec
density for the first three states of symmet
(Lz ,pz ,Sz)5(0,1,21) at both zero field ~top! and
bZ50.1 ~bottom!. Note that the strong field confines th
electrons nearer to the nucleus, hencec0 must often be in-
creased to prevent numerical instabilities caused by com
nodes among the basis states$ f i%. For the other coefficients
ci ( i.0), one typically chooses ascending values~for ex-
ample,c150.1,c250.5,c351.0) such that the random wal
also explores the region more distant from the nucleus. T
choice helps sample more efficiently the more highly exci
states, and avoids getting stuck in pockets of phase spa

B. Results for neutral He

As a test of our RP method we evaluated excited s
energies for He at zero magnetic field strength. Compari
with extensive variational calculations of the nonrelativis
helium atom, which are essentially ‘‘exact’’ and with th
experimental values gave complete agreement, showing
r
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systematic errors to be smaller than our statistical err
Relativistic and finite nuclear mass effects are also v
small. We also tested that our RP procedure recovered
HF results at zero projection time, and that the results w

FIG. 1. The HF electron density~in atomic units! in the longi-
tudinal (z) and transverse (x) directions for the first three excited
states of neutral helium that are spherically symmetric at zero fi
~top plot!. The bottom plot shows the resulting anisotropy in t
electron density when a field ofbZ50.1 is applied.

FIG. 2. A typical RP calculation for the helium atom (1s2p21

state! at bZ50.1, showing the convergence of the first two excit
states in imaginary time. The dotted line indicates the fixed-ph
results for that state. The FP value is in close agreement for
ground state, but is too low for the second state due to overlap
the lower state. This illustrates the nonvariational character of
when applied to excitations. The short line segment att50 is the
HF energy value.
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55 6207RELEASED-PHASE QUANTUM MONTE CARLO METHOD
independent of time step. Further tests were performed
the excited state spectrum of neutral hydrogen atoms
strong fields. Using fairly crude approximations for the e
cited states we were able to recover the known energie
the low-lying excitations@10#.

Turning now to strong magnetic fields, Fig. 2 shows t
convergence of the first two excited states of the heli

FIG. 3. The probability distributionDw at three increasing val-
ues of imaginary timet50.0025, 0.1, 1.0 for several excited stat
over the course of the random walk in a typical RP calculation,
defined in Eq.~36!. Nhits is the number of points along the pat
taking on a particular value ofDw. Note that broadening of the
distribution occurs more rapidly for the higher excited states~top!.

FIG. 4. The probability distributionDr at three increasing val-
ues of imaginary timet50.0025, 0.1, 1.0 for several excited stat
over the course of the random walk in a typical RP calculation,
defined in Eq.~36!. Note thatDr shows little dependence on th
imaginary time.
n
in
-
ofatom atbZ50.1 of the (Lz521,pz51, Sz521) symme-
try. In this example 50 independent trajectories each wit
total time of 1.5 ~atomic units! (NT550, p5600000,
t50.0025) were used. At zero time the energy is the va
tional energy, in this case the self-consistent-field HF ene
of the first two basis states. As we progress in imagin
time the energy drops and the variance grows. The ene

s

s

FIG. 5. The increasing variance as a function of projection ti
and excitation energy for the first three excitations
(Lz ,pz ,Sz)5(0,1,21) symmetry in helium atbZ50.3. Zero field
quantum numbers are given in the key at the top of the plot. N
that the variance of the energy,s^Ei &

2 , grows with projection time
and excitation energy. The initial decrease in the variance is du
the improvement of the wave function at short imaginary times. T
lines are provided only as a guide to the eye.

FIG. 6. The neutral helium energy spectrum using RP. The li
are spline fits to our data, included in Table I. Three states w
evaluated for each of the four symmetries shown.
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clearly converges before the variance gets too large.
The reason why the variance grows is shown in Fig.

which plots the change in the phaseDw, of the first three
excited states of symmetry (Lz ,pz ,Sz)5(21,1,21) at
bZ50.1 for a sampling of elapsed times. Define the cha
in magnitude and phase for a particular state as

Dr1 iDw j~mt!5 ln@F j* ~Rn!Wn,n1mF j~Rn1m!#. ~36!

Figure 3 shows a histogram of this phase change determ
over the course of the random walk. Note the spreading
the phase with increasing imaginary time~the zero time
value is simply a spike at zero!. For this particular calcula-
tion, the longest time at which data could be meaningfu
gathered was approximatelyt5mt.1.0. A similar plot for
the magnitude~shown in Fig. 4! Dr , does not show the sam
behavior at increasing times, or with increasing excitat
energy. This general result illustrates the fact that the do
nant contribution to the increasing variance comes from
change in the phase. Figure 5 shows the typical behavio
the variance at long times for several excited states. N
that, as expected, the variance is much larger for the m
highly excited states.

Figure 6 shows the energy spectrum for neutral heliu
including the first three excited states of each symmetry h
ing Lz50 and Lz521. Note that the separation betwee
states of the same symmetry grows larger as the field
,

e

ed
of

y

n
i-
e
of
te
re

,
v-

n-

creases, and there are many level crossings as the field g
larger. At a zero applied field, our calculated energies rep
duce the results of extensive variational calculations@20#.
The data for the energies shown in Fig. 6 is included
Table I.

C. Accuracy of the HF and FP approximations

Using converged energies we are now able to determ
the accuracy of the HF and fixed-phase approximations
atoms in strong magnetic fields. With increasing magne
field strength, the errors in the HF energies grow due to
combination of basis set truncation error@12# and increasing
electron correlation. Figure 7 shows the difference betw
the RP and HF results for the first three excitations of all fo
symmetries considered thus far. The truncation errors in
HF results make it difficult to isolate trends in the RP-H
differences. Since we therefore do not get the true HF
ergy, we can not accurately determine the correlation ene
The basis set errors are also the dominant contribution to
MC variances. Improved basis sets would lead to sma
error bars for our RP energies.

Figure 8 shows a comparison between the FP and
energies for the two lowest states of all four symmetr
considered thus far. We note that, within error bars, the
and RP results are equal for the lowest symmetry state~lower
plot! except forbZ51, implying that the fixed-phase ap
each
TABLE I. RP energies,ERP, for He in theLz50, 1,Sz521 states in hartree. Numbers in parentheses are the uncertainties for
energy. Quantum numbers (Lz ,pz ,Sz) are at the top.

(0,1,21) (21,1,21)
1s2s 1s3s 1s4s 1s2p21 1s3p21 1s4p21

bZ 2ERP 2ERP 2ERP bZ 2ERP 2ERP 2ERP

0.0000 2.1751~6! 2.0687~2! 2.0365~1! 0.0000 2.1339~8! 2.0581~3! 2.0323~2!

0.0010 2.1830~5! 2.0760~1! 2.0413~4! 0.0010 2.1437~7! 2.0689~4! 2.0407~3!

0.0100 2.2438~3! 2.1209~1! 2.0687~9! 0.0100 2.2380~9! 2.1219~5! 2.0809~9!

0.1000 2.5737~3! 2.4395~9! 2.3497~21! 0.1000 2.8354~5! 2.4856~5! 2.3852~17!
0.2000 2.8669~5! 2.7330~8! 2.6665~26! 0.2000 3.3079~7! 2.8015~5! 2.6950~12!
0.3000 3.1225~5! 2.9751~11! 2.8357~29! 0.3000 3.6912~4! 3.0616~7! 2.8961~7!

0.4000 3.3460~3! 3.1912~13! 3.0400~26! 0.4000 4.0179~8! 3.2905~9! 3.1425~36!
0.5000 3.5429~8! 3.3855~11! 3.2197~10! 0.5000 4.3043~5! 3.4886~5! 3.2782~13!
0.7000 3.8902~5! 3.7069~31! 0.7000 4.7985~3! 3.8291~8!

1.0000 4.3204~5! 4.1169~19! 1.0000 5.4072~13! 4.2436~32!

(0,2,21) (21,2,21)
1s2p0 1s3p0 1s4p0 1s3d21 1s4d21 1s5d21

bZ 2ERP 2ERP 2ERP bZ 2ERP 2ERP 2ERP

0.0000 2.1339~8! 2.0581~2! 2.0323~2! 0.0000 2.0557~8! 2.0315~9! 2.0198~9!

0.0010 2.1408~8! 2.0655~5! 2.0350~10! 0.0010 2.0672~9! 2.0413~9! 2.0266~7!

0.0100 2.2050~6! 2.1100~3! 2.0578~14! 0.0100 2.1410~1! 2.0912~2! 2.0624~9!

0.1000 2.6397~9! 2.4545~6! 2.3925~7! 0.1000 2.5590~27! 2.4369~12! 2.3504~14!
0.2000 2.9873~8! 2.7596~8! 2.6749~6! 0.2000 2.8964~7! 2.7394~8! 2.6436~17!
0.3000 3.2710~8! 3.0128~8! 2.9021~20! 0.3000 3.1714~5! 2.9946~11! 2.8785~16!
0.4000 3.5134~7! 3.2365~13! 3.1177~17! 0.4000 3.4075~9! 3.2092~13! 3.0307~30!
0.5000 3.7231~9! 3.4356~6! 3.3173~32! 0.5000 3.6188~20! 3.39670~21! 3.1640~31!
0.7000 4.0870~2! 3.7550~12! 0.7000 3.9756~8! 3.7203~20!
1.0000 4.5314~4! 4.1651~8! 1.0000 4.4214~19! 4.1074~9!
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proximation is a good one for the lowest-lying excitations
the helium atom, at least over most of the range of magn
field strengths studied thus far. The difference at larger v
ues ofbZ can be attributed to the fact that the HF pha
function is inadequate. We also note that the FP results

FIG. 7. Energy differences between the RP and HF results,
the first three excitations of all four symmetriesLz50,21,
Sz521, pz56. Zero field quantum numbers are included in t
key in the upper part of the plot. Error bars are approximately
same size~or smaller! than the symbols. The line connects th
1s3d21 data (m), and is provided only as a guide to the eye. T
spread in the data points is due to the incomplete convergenc
the HF calculations.

FIG. 8. A comparison between the FP and the RP results for
first two excited states of (Lz ,pz ,Sz)5(21,6,21) and
(0,6,21) symmetry as a function of magnetic field strength. T
line connects the points of (21,1,21) symmetry, and is provided
only as a guide to the eye.
f
ic
l-
e
or

the higher excited state~upper plot! are generally lower~but
not uniformly lower! than the exact energies. Since FP is
longer variational for the more highly excited states of
particular symmetry, and the error is not very predictable,
RP method is necessary~and crucial! for an accurate deter
mination of the excited state energies.

D. Gauge dependence

Thus far we have neglected the role of gauge freedo
and simply chosen to use the symmetric gau
@A5B(2y,x,0)/2# throughout. Certainly any physical ob
servable must be independent of the choice of gauge, b
was suggested by Zhang, Canright, and Barnes@16# that the
gauge could be used to lower the variance of the energy.
results of Zhang, Canright, and Barnes were based on la
MC calculations for a tight binding model, for which the
tested two choices of gauge, one of which varied consid
ably more than the other for a typical MC move. They fou
that the gauge which varied the least on average during
random walk~the gauge more evenly distributed over spa!
had MC averages with much smaller error bars.

It is clear, however, that the statistical variance is gau
invariant in the following sense. If we consider adding
many-body gauge and simultaneously change the phas
the basis set,

A→A1¹LA , ~37!

f i→e2 iLA f i , ~38!

the total contribution to the matrix elements will be invaria
and, hence, the eigenvalues and variances will be unaffec
Hence, if the basis set is optimized~say within HF! for a
given gauge, shifting the gauge will change nothing. If t
basis set is nonoptimized or optimized for a different gau
then a gauge transformation could have an effect.

r

e

of

e

FIG. 9. Dependence of the variance on the gauge in a typica
calculation. The vector potential is given byA5B„f y,(11 f )x,0….
Shown is the variance of the energy of the fir
(Lz ,pz ,Sz)5(0,1,21) state atbz50.1. The line is a spline fit to
the data points (n).
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6210 55JONES, ORTIZ, AND CEPERLEY
There is another way the gauge could affect the e
ciency. The accuracy of the short-time Green’s functio
@Eq. ~22!# could depend on the gauge. We neglect comm
tators between the vector potential and the kinetic energ
making the Trotter breakup. Gauges with smooth values
A will have smaller time step errors.

We have tested the effect of the gauge for the heli
atom by generalizing to an ‘‘elliptic’’ gauge~but still satis-
fying “•A50),

A5B„f y,~11 f !x,0…, ~39!

where f521/2 corresponds to the symmetric gauge. Fig
9 shows a series of RP calculations with various values
f for the (Lz ,pz ,Sz)5(0,1,21) symmetry atbZ50.1 and
projection timet51.0. We see that the variance is minimiz
for f'21/2, the symmetric gauge, with the largest varian
at the extremesf50 andf521. This result is a demonstra
tion that the symmetric gauge minimizes the variance w
using our form for the short-time Green’s function@Eq. ~22!#
and HF basis states.

IV. CONCLUSIONS

We have introduced the correlation function method
complex-valued wave functions. This released-phase me
er

tt.
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d

G.

ar
-
s
-
in
of

e
r

e

n

od

has a wide range of potential physical applications, of wh
we have selected magnetized atoms as an important exam
We have thus been able to determine the ground and exc
state spectrum of neutral helium in fields up to 1010 G with
an unprecedented level of accuracy, a necessity for matc
astrophysical observations of spectra from compact ste
remnants. The RP technique, however, is limited in its sc
of application to small systems with relatively small excit
tion energies. By generating more accurate basis sets
guiding functions we hope to be able to apply this method
larger atoms such as carbon, for which accurate spectral
culations in strong magnetic fields do not yet exist. We w
present more extensive improved RP calculations for neu
helium elsewhere@21#, and discuss the relevance to the o
served spectra@9#. Bayesian methods can also be used to
in the extrapolation to large projection times@22#. Although
we have implemented the RP method for particles in
continuum, the approach can easily be extended to ferm
on a lattice.
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